ADVM 0062 - INTRODUCTION TO COMPUTER AIDED DESIGN AND MANUFACTURING (CAD/ CAM)

Catalog Description

Hours: 81 (27 lecture, 54 laboratory)

Description: Introduction to CAD/CAM using Fusion 360. Covers practical on-the-job skills needed for precision machining. Students will learn skills needed to read and understand detailed drawings, create a process plan for machining parts, create 3D CAD files from 2D drawings, create 2D drawings from 3D models, plan and create CNC toolpaths and export Gcode for manufacturing. (not transferable)

Course Student Learning Outcomes

- CSLO #1: Demonstrate safety standards for both a learning lab environment and worksite environment for metal working including cutting, machining, forming and assembly.
- CSLO #2: Apply the terms used in this industry: chip hook, coolant, geometric control, burrs, height gage, indicators, toolpath and clearance.
- CSLO #3: Operate various types of machines in performance of construction of assigned project(s).

Effective Term

Fall 2021

Course Type

Credit - Degree-applicable

Contact Hours

81

Outside of Class Hours

54

Total Student Learning Hours

135

Course Objectives

Lecture:

- 1. Differentiate additive vs subtractive manufacturing.
- 2. Create CAD drawings to render assigned project.
- 3. Develop a strategy of operations for projects using computer assisted programming.

4. Analyze and compare CAD specifications with completed part geometry and provide logical recommendations for corrections. Laboratory:

- 1. Demonstrate machine set-up and operation using created design.
- 2. Execute tool path operation to complete part.
- 3. Perform secondary offload operations and assembly.

General Education Information

- Approved College Associate Degree GE Applicability
- · CSU GE Applicability (Recommended-requires CSU approval)
- · Cal-GETC Applicability (Recommended Requires External Approval)

1

· IGETC Applicability (Recommended-requires CSU/UC approval)

Articulation Information Methods of Evaluation

- Classroom Discussions
 - Example: Class discussion on parametric modeling. Students will be evaluated on participation.
- Projects
 - Example: Students will be evaluated on designing a 3D model using CAD software. Example: Reverse engineering of a hard jaw.

Repeatable

No

Methods of Instruction

- Laboratory
- Lecture/Discussion
- Distance Learning

Lab:

1. The instructor will demonstrate how to align the vise to the X & Y axis of the milling machine, followed by the student demonstrating the process safely.

Lecture:

1. Instructor lecture on creation of CAD drawings followed by students outlining the steps to creating a CAD drawing.

Typical Out of Class Assignments Reading Assignments

1. Read chapter from text on understanding chip development of central focus point called interference contact. (IX - rake, clearance, cutting angles). Be prepared to discuss in class. 2. Read chapter measurement and be able to identify three methods to measure the 1.75 inch diameter hole within 0.0005 tolerance. (XIII - Inspection methods).

Writing, Problem Solving or Performance

1. Experiment #1: Using modeling clay, try varying the rake angle comparing positive rake vs negative rake. (XI - define the shear line in a chip). 2. Machine center holding tooling, identify fixture and material holding.

Other (Term projects, research papers, portfolios, etc.) Required Materials

- Machining and CNC Technology
 - Author: Fitzpatrick, Smith
 - Publisher: McGraw Hill
 - Publication Date: 2019

- Text Edition: 4th
- Classic Textbook?:
- OER Link:
- OER:

Other materials and-or supplies required of students that contribute to the cost of the course.