
CSCI 0013 - Programming Concepts and Methodology II 1

CSCI 0013 - PROGRAMMING
CONCEPTS AND
METHODOLOGY II

Catalog Description
Prerequisite: Completion of CSCI 12 with grade of "C" or better
Hours: 72 (54 lecture, 18 laboratory)
Description: Application of software engineering techniques to the design
and development of large programs; data abstraction and structures and
associated algorithms. (C-ID COMP 132) (CSU, UC)

Course Student Learning Outcomes
• CSLO #1: Implement linear lists with arrays and linked objects.
• CSLO #2: Write programs that use the stack and queue data

structures, based on provided specifications.
• CSLO #3: Produce intermediate-sized programs using Object-Oriented

design principles, with a combination of written and provided code.
• CSLO #4: Identify effective techniques to test, debug, and document

larger programs.
• CSLO #5: Write a program that uses recursive algorithms operating

on a binary tree.

Effective Term
Fall 2020

Course Type
Credit - Degree-applicable

Contact Hours
72

Outside of Class Hours
90

Total Student Learning Hours
162

Course Objectives
Lecture Objectives:
1. Discuss the representation and use of primitive data types and built-in
data structures.
2. Describe how the data structures are allocated and used in memory.
3. Describe common applications for each data structure.
4. Compare alternative implementations of data structures with respect
to performance.
5. Compare and contrast the costs and benefits of dynamic and static
data structure implementations.
6. Choose the appropriate data structure for modeling a given problem.
7. Describe the concept of recursion and give examples of its use.
8. Identify the base case and the general case of a recursively defined
problem.
9. Compare iterative and recursive solutions for elementary problems
such as factorial.

10. Describe the divide-and-conquer approach.
11. Describe how recursion can be implemented using a stack.
12. Discuss problems for which backtracking is an appropriate solution.
13. Determine when a recursive solution is appropriate for a problem.
14. Explain the value of declaration models, especially with respect to
programming-in the-large.
15. Identify and describe the properties of a variable such as its
associated address, value, scope, persistence, and size.
16. Discuss type incompatibility.
17. Defend the importance of types and type-checking in providing
abstraction and safety.
18. Evaluate trade-offs in lifetime management (reference counting vs.
garbage collection).
19. Explain how abstraction mechanisms support the creation of reusable
software components.
20. Defend the importance of abstractions, especially with respect to
programming-in-the-large.
21. Describe how the computer system uses activation records to
manage program modules and their data.
22. Justify the philosophy of object-oriented design and the concepts of
encapsulation, abstraction, inheritance, and polymorphism.
23. Describe how the class mechanism supports encapsulation and
information hiding.
24. Compare and contrast the notions of overloading and overriding
methods in an object-oriented language.
25. Explain the relationship between the static structure of the class and
the dynamic structure of the instances of the class.
26. Describe how iterators access the elements of a container.
27. Discuss the properties of good software design.
28. Compare and contrast object-oriented analysis and design with
structured analysis and design.
Laboratory Objectives:
1. Implement the user-defined data structures in a high-level language.
2. Write programs that use each of the following data structures: arrays,
records, strings, linked lists, stacks, queues, and hash tables.
3. Implement, test, and debug simple recursive functions and procedures.
4. Demonstrate different forms of binding, visibility, scoping, and lifetime
management.
5. Demonstrate the difference between call-by-value and call-by-reference
parameter passing.
6. Design, implement, test, and debug simple programs in an object-
oriented programming language.
7. Design, implement, and test the implementation of "is-a" relationships
among objects using a class hierarchy and inheritance.

General Education Information
• Approved College Associate Degree GE Applicability
• CSU GE Applicability (Recommended-requires CSU approval)
• Cal-GETC Applicability (Recommended - Requires External Approval)
• IGETC Applicability (Recommended-requires CSU/UC approval)

Articulation Information
• CSU Transferable
• UC Transferable

Methods of Evaluation
• Objective Examinations

• Example: Multiple choice and short answer questions such as: 1.
Which of the following is not a valid Java identifier? a) pressureA

Sierra College Catalog 2024-2025

2 CSCI 0013 - Programming Concepts and Methodology II

b) ppO2 c) 4counter d) all of the above are valid Java identifiers
Answer: c Identifiers must begin with an upper or lowercase letter.

• Problem Solving Examinations
• Example: 1. Write a static method that computes the arithmetic

mean of a list of numbers. Your methods should accept the list
of numbers as a parameter. Rubric Grading. Answer: public static
double mean(double[] x) { double average=0; //sum the values
in the list for(int i=0; i average=average+x[i]; return average/
x.length; } 2. Laboratory assignments covering computer science
principles and applications such as: 1. Implement the infix to
postfix conversion program discussed in class. Your solution
should make use of a reference-based stack. Your program
should also check the validity of the input stream. Rubric Grading.

• Projects
• Example: Create a program that simulates the flight of a model

rocket. Your program should allow the user to specify the mass of
the rocket, total impulse of the motor, and burn time of the motor.
Your simulation should use the formulas discussed in class. For
the simulation output, create a chart that shows the altitude of
the rocket each 10th of a second.

Repeatable
No

Methods of Instruction
• Laboratory
• Lecture/Discussion
• Distance Learning

Lab:

1. Prior to the lab, ask the class to read the data structures chapter and
pay close attention to the design and implementation of the queue.
Instructor initiate the discuss for the following: How would you use
the queue to simulate waiting in line for a ride at an amusement park?
Students will be asked to create a Java program for this simulation.
(Laboratory Objective 2)

Lecture:

1. Assume students have read the chapter on data structures. Instructor
gives a 20 to 30 minute lecture discussing the array implementation
of the stack. Make use of the whiteboard and a handout about the
stack during the lecture. Discuss postfix notation and how a stack
is used to process a postfix expression. Ask the students to develop
pseudocode for processing a postfix expression using a stack. Ask
three students to put their solution on whiteboard. Discuss each
solution with class. Discuss optimal pseudocode using presentation
software. (Lecture Objective 6)

Distance Learning

1. Through Distance Learning, the instructor will present a video lecture
on inheritance. After the student views the lecture, they will then be
asked to write the GeometricObject class, Circle class and rectangle
class using the inheritance. (Laboratory Objective 7)

Typical Out of Class Assignments
Reading Assignments
1. Read and study the chapter on fundamental data structures. Focus
your reading on the stack and queue. Be prepared to compare and
contrast these two structures and their various implementations in class.
2.Read and study the handout on overloading and overriding. Compare
and contrast the notions of overloading and overriding methods in an
object-oriented language and be prepared to discuss in class.

Writing, Problem Solving or Performance
Typical early lab assignment: Goals: Cutting a string into pieces.Counting
words. Description Write two separate Java programs for cutting a
string (sentence) into individual tokens (words). Part 1 Write a Java
program that uses the StringTokenizer class (in java.util) to break a
string into tokens. Your program should print each word from the string
on a separate line. In addition, your program should print the number
of tokens found in the string. You may assume the tokens in the string
are separated by one or more spaces and the string is terminated with
a period. This first program may be written entirely in a main method.
Please use the string under test data to test your program. Part 2 Your
second program should also slice a string into tokens, but without the aid
of the StringTokenizer class. Using the charAt() method, and the string
length constant, to tokenize the test data string. Add each token from
the string into an ArrayList object (see the Java API under java.util). Your
program can simply add each token to the ArrayList as the tokens are
discovered.

Other (Term projects, research papers,
portfolios, etc.)
Required Materials

• Introduction to Java Programming
• Author: Y. Daniel Liang
• Publisher: Pearson Education
• Publication Date: 2014
• Text Edition: 10th
• Classic Textbook?: No
• OER Link:
• OER:

• Starting out with Java
• Author: Tony Gaddis
• Publisher: Pearson
• Publication Date: 2017
• Text Edition: 6th
• Classic Textbook?: No
• OER Link:
• OER:

Other materials and-or supplies required
of students that contribute to the cost of
the course.

Sierra College Catalog 2024-2025

