
CSCI 0046 - System Programming with C 1

CSCI 0046 - SYSTEM
PROGRAMMING WITH C

Catalog Description
Prerequisite: Completion of CSCI 12 with grade of "C" or better
Advisory: Completion of CSCI 50 with grade of "C" or better
Hours: 72 (54 lecture, 18 laboratory)
Description: Introduction to the C language and system programming
on a Unix-like operating system. Topics include the standard C library,
memory allocation, file I/O, permissions, system calls, networking, and
process management. Development in a Unix environment will cover
editors, shell scripting, makefiles, source code control, and debugging.
(CSU, UC)

Course Student Learning Outcomes
• CSLO #1: Use the standard C libraries for input/output, memory

management, and networking.
• CSLO #2: Construct multi-file programs using appropriate software

engineering tools.
• CSLO #3: Construct programs utilizing arrays, structures, loops, and/

or subroutines.
• CSLO #4: Debug and add features to existing programs.

Effective Term
Fall 2020

Course Type
Credit - Degree-applicable

Contact Hours
72

Outside of Class Hours
90

Total Student Learning Hours
162

Course Objectives
Lecture Objectives:
1. Identify the phases of compiling a C program.
2. Interpret a written program specification and decompose it into
psuedocode.
3. Analyze the dependency graph for building a multi-file project.
Construct a Makefile to automate the build process.
4. Describe the primitive C data types.
5. Interpret documentation of library functions and use the functions in
working programs.
Laboratory Objectives:
Interpret written program specifications and write C programs
conforming to the ANSI standard incorporating the following language
and library features:
1. Standard I/O using printf, scanf, fputs, and fgets;
2. String manipulation using strcmp, arrays, and pointer arithmetic;

3. Structs and unions;
4. Multiple source and header files;
5. Stream-based and record-based file I/O;
6. Dynamic memory management;
7. Process management system calls including fork, exec, and wait, and
their variants;
8. Command-line arguments;
9. Control structures: if/else, while, do/while, for;
10. Functions that accept and return primitive types, arrays, and structs;
11. Standard mathematical functions from the libm library;
12. Client socket programming;
13. Recursive functions.
14. Writing makefiles to automate the compilation process;
15. Coordinating development among two or more persons using a
version control system;
16. Compiling and linking programs requiring multiple source files.

General Education Information
• Approved College Associate Degree GE Applicability
• CSU GE Applicability (Recommended-requires CSU approval)
• Cal-GETC Applicability (Recommended - Requires External Approval)
• IGETC Applicability (Recommended-requires CSU/UC approval)

Articulation Information
• CSU Transferable
• UC Transferable

Methods of Evaluation
• Classroom Discussions

• Example: Why is fgets preferred over gets? Answer: The gets
function doesn't do bounds-checking on the string array. It is
possible to overrun the array by simply inputting more characters
than the array allows for. The fgets functions, by contrast,
is passed the length of the array and will not accept more
characters than the given limit. Buffer overruns and a myriad of
security vulnerabilities can be prevented by using fgets instead of
gets. Grade based on participation.

• Objective Examinations
• Example: Sample test question: The following statements are

executed: int x, y; x = 5; y = 8; y = ++x * y; What are the values of x
and y? Answer: x = 6, y = 40

• Problem Solving Examinations
• Example: Sample assignment: Write a recursive function to

implement the quicksort algorithm. Write a driver program to
accept a list of numbers from the user, sort them, and display the
results to standard output. Test your function on integer arrays
of size zero, one, two, and ten, and sixteen. Rubric Grading: - Does
the program accept numeric input and display correct results? -
Is the function recursive? - Does the function work on inputs of
size zero, one, two, ten, and sixteen? - Does the function choose
a suitable pivot element? - Is the relative ordering of elements
retained as they are copied around the pivot? - Is the program
well-documented? - Does the program include a Makefile? - Does
the program compile without warnings or errors?

• Projects
• Example: Sample assignment: Write a recursive function to

implement the quicksort algorithm. Write a driver program to
accept a list of numbers from the user, sort them, and display the
results to standard output. Test your function on integer arrays

Sierra College Catalog 2024-2025

2 CSCI 0046 - System Programming with C

of size zero, one, two, and ten, and sixteen. Rubric Grading: - Does
the program accept numeric input and display correct results? -
Is the function recursive? - Does the function work on inputs of
size zero, one, two, ten, and sixteen? - Does the function choose
a suitable pivot element? - Is the relative ordering of elements
retained as they are copied around the pivot? - Is the program
well-documented? - Does the program include a Makefile? - Does
the program compile without warnings or errors?

Repeatable
No

Methods of Instruction
• Laboratory
• Lecture/Discussion
• Distance Learning

Lab:

1. Following an instructor discussion on Makefile, the students will
construct a Makefile for their own assignments. (Laboratory Objective
14)

Lecture:

1. Building a multi-file project is a complex process. The instructor
will lecture and present a project consisting of at least three C
files, three headers files, and a library (such as libm). The project
can be built "by hand" using four compilation and link commands.
From this information, a dependency graph can be illustrated. This
dependency graph forms the basis of constructing a Makefile -- a file
that describes the sequence of events needed to build a project and
automatically re-build only the affected files when changes are made.
The instructor will walk the students through writing and testing a
Makefile for the example project. (Lecture Objective 3)

Distance Learning

1. In the distance learning format, the instructor prepares a video
demonstration using screencasting software of writing a C program
that uses the printf and scanf functions to get input from the user, do
a calculation, and present the results. Students watch this video to
prepare for the week's lab assignment. Example: the student writes a
program to calculate the area of a circle given the diameter. (Lecture
Objective 1; Laboratory Objective 1)

Typical Out of Class Assignments
Reading Assignments
1. Read the textbook chapter about the primitive data types. Pay
attention to how each has a different formatting code in the printf
function. Be prepared to discuss in class. 2. Read the description of the
programming assignment for this week. Prepare to discuss in class how
to decompose the problem into functions and what variables will be
needed.

Writing, Problem Solving or Performance
1. Write a recursive function to implement the quicksort algorithm.
Test your function on integer arrays of size zero, one, two, and ten, and
sixteen. 2. Compare and contrast the Java and C programming languages

in the following areas: performance, memory usage, portability, ease of
readability.

Other (Term projects, research papers,
portfolios, etc.)
Numerous hands-on programming assignments.

Required Materials
• C for Programmers with an Introduction to C11

• Author: Deitel, Paul and Harvey Deitel
• Publisher: Deitel Developer Series
• Publication Date: 2013
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

• Understanding and Using C Pointers
• Author: Reese, Richard
• Publisher: O'Reilley
• Publication Date: 2013
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

Other materials and-or supplies required
of students that contribute to the cost of
the course.

Sierra College Catalog 2024-2025

