
CSCI 0039 - Introduction to Computer Architecture and Assembly Language 1

CSCI 0039 - INTRODUCTION
TO COMPUTER
ARCHITECTURE AND
ASSEMBLY LANGUAGE

Catalog Description
Prerequisite: Completion of CSCI 10 with grade of "C" or better
Hours: 72 (54 lecture, 18 laboratory)
Description: Assembly language programming techniques and
introductory computer architecture concepts. Topics include addressing
modes; pseudo operations; stack processing; subroutine linkage;
arithmetic and logical operations; input and output; digital logic.
Programs are designed, coded, tested, and debugged. (C-ID COMP 142)
(CSU, UC)

Course Student Learning Outcomes
• CSLO #1: Write simple assembly language program segments.
• CSLO #2: Implement a machine level language program based on the

given high level language program.
• CSLO #3: Explain the internal representation of integer, floating point

and non-numeric representation of data.
• CSLO #4: Explain addressing modes used to access data.
• CSLO #5: Use fundamental logic gates to design and implement

combinational and sequential digital circuits.

Effective Term
Fall 2020

Course Type
Credit - Degree-applicable

Contact Hours
72

Outside of Class Hours
90

Total Student Learning Hours
162

Course Objectives
Lecture Objectives:
1. Describe the programmer's model of the target computer.
2. Describe the operation and use of an assembler.
3. Pseudocode algorithms that perform multi-byte arithmetic.
4. Pseudocode algorithms that perform code conversion.
5. Pseudocode algorithms that make use of the input-output devices,
such as the USART, on the microcontroller.
6. Demonstrate the ability to convert high-level pseudocode algorithms to
assembly language.
7. Compare and contrast RISC and CISC architectures.

8. Compare and contrast microcontrollers and microprocessors.
Laboratory Objectives:
1. Demonstrate the ability to use an assembly language integrated
development environment.
2. Write assembly language programs that use multi-byte arithmetic and
memory load-store operations.
3. Write assembly language programs that make use of LEDs as output
devices and switches as input devices.
4. Write assembly language programs that perform code conversion.
5. Write assembly language programs that make use of common
peripherals including the USART, timer-counter, analog to digital
converter, pulse-width modulator, and EEPROM.
6. Write assembly language programs that interface to external
peripherals using the SPI or I2C bus.
7. Write assembly language programs that interface assembly language
modules to a high-level language program.
8. Write assembly language programs that demonstrate fundamental
operating system concepts.
9. Design combinational logic circuits.

General Education Information
• Approved College Associate Degree GE Applicability
• CSU GE Applicability (Recommended-requires CSU approval)
• Cal-GETC Applicability (Recommended - Requires External Approval)
• IGETC Applicability (Recommended-requires CSU/UC approval)

Articulation Information
• CSU Transferable
• UC Transferable

Methods of Evaluation
• Objective Examinations

• Example: 1. Convert the binary number 01001010 to decimal.
2. Which registers in the arm Cortex-M are used for the stack
pointer, link register, and program counter?

• Problem Solving Examinations
• Example: The following assignment is evaluated based on

program functionality (50%), appropriate division of labor in
subprograms (30%), and quality of documentation (20%): Write
an arm assembly language program that implements the four
fundamental 64-bit math operations. Each binary operator
subprogram should accept its operands though the R0 and
R1 registers. Assume the operands are stored in little-endian
notation. Rubric Grading.

• Skill Demonstrations
• Example: The following assignment is evaluated based on

program functionality (50%), object-oriented design techniques
(30%), and quality of documentation (20%): Write a program that
counts in binary from 00000000 to 11111111. Your program
should display each number on the LEDs connected to port B of
the microcontroller. You will need to implement a 0.5 s time delay
subprogram that is called after each number is displayed. Rubric
Grading.

Repeatable
No

Sierra College Catalog 2024-2025

2 CSCI 0039 - Introduction to Computer Architecture and Assembly Language

Methods of Instruction
• Laboratory
• Lecture/Discussion
• Distance Learning

Lab:

1. Following an instructor discussion on the if/else in assembly
language, students will be given a problem to be solved using if/else
in assembly language. (Laboratory Objective 7)

Lecture:

1. When teaching the topic of addressing modes, the faculty uses
primarily lecture. Each addressing mode is discussed in turn
and multiple examples of each mode are written on the white
board. Special attention is paid to indexed addressing and its use.
Determining the length of a null terminated string is used an example
of where indexed addressing is necessary. Students are assigned
multiple labs that demonstrates their knowledge of addressing
modes. (Lecture Objective 1)

Distance Learning

1. Online lecture and discussion about microcontrollers and
microprocessors, followed by students comparing and contrasting
microcontrollers and microprocessors in a report that is posted for
other students to review and provide comments.(Lecture Objective 8)

Typical Out of Class Assignments
Reading Assignments
1. Read Chapter Three in Upton, Electronic Memory (pages 47-91). Create
a table showing the various types of memory, a short description of each
type, and the access time in nanoseconds and be prepared to discuss
in class. 2. Read Chapter four in Upton, System on a Chip (SOC) and be
prepared to discuss in class.

Writing, Problem Solving or Performance
1. Implement the binary to ASCII decimal algorithm discussed in class.
Use register R16 to pass the binary number into the subprogram, and
a four byte memory buffer to store the result. Test Data Pass each of
the following numbers to your binary to ASCII decimal subprogram:
0b00000001 0b11111111 0b10100101 0b00000000 0b11001100 You
must call the subprogram once for each test datum. So there should be
5 calls to your subprogram in your main program. Make sure you clear
the memory buffer before each call. 2. Write a pair of programs that count
and display the number of times the switch connected to the low order bit
of Port D is pressed. The first program accepts the switch input without
debounce, and the second program adds a debounce delay. Recall that
when a switch is pressed, the corresponding bit of the input port goes to
logic-level 0.

Other (Term projects, research papers,
portfolios, etc.)
Required Materials

• Learning Computer Architecture the the Raspberry Pi
• Author: Eben Upton, Jeff Duntemann, Ralph Roberts, Tim

Mamtora, Ben Everard

• Publisher: Wiley
• Publication Date: 2016
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

• Modern Assembly Language Programming with the ARM Processor
• Author: Larry D. Pyeatt
• Publisher: Newnes
• Publication Date: 2016
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

• Raspberry Pi Assembly Language Programming: ARM Processor
Coding

• Author: Stephen Smith
• Publisher: Apress
• Publication Date: 2019
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

Other materials and-or supplies required
of students that contribute to the cost of
the course.

Sierra College Catalog 2024-2025

