
CSCI 0076A - Game Programming 1

CSCI 0076A - GAME
PROGRAMMING

Catalog Description
Prerequisite: Completion of CSCI 12 with grade of "C" or better
Advisory: Completion with grade of "C" or better or concurrent enrollment
in CSCI 13
Hours: 72 (54 lecture, 18 laboratory)
Description: Explore the algorithms, data structure, and techniques used
to program computer video games. Emphasis on arcade-style video
games (new and classic) written in Java. Topics include 2D animation,
sprites, interaction, music, and sound. Underlying issues include
graphical user interface programming, multi-threaded applications,
realtime programming, use of sophisticated APIs, and societal impacts of
computer gaming. (CSU, UC)

Course Student Learning Outcomes
• CSLO #1: Explain and apply basic 2D game concepts including the

game engine, playing fields, sprites and events.
• CSLO #2: Explain and apply the game engine's update/render/draw

loop and how this loop is utilized to implement a game.
• CSLO #3: Apply the basic 2D game concepts to design and implement

a 2D game.

Effective Term
Fall 2020

Course Type
Credit - Degree-applicable

Contact Hours
72

Outside of Class Hours
90

Total Student Learning Hours
162

Course Objectives
Lecture Objectives:
1. Design a storyboard for a computer game.
2. Design and implement graphically-oriented computer programs based
on written requirements and specifications.
3. Research and utilize third-party frameworks and Application
Programming Interfaces to aid the programmer in developing computer
games.
4. Evaluate game designs for user interface issues.
5. Evaluate game designs for gender and age issues.
6. Write a game design document at least five pages long that includes
industry-accepted sections on game play, user experience, sample
graphics, and flow.
Laboratory Objectives:

1. Design and implement correct algorithms for detecting the collision
between two objects on screen.
2. Implement correct algorithms for simulating basic physical
phenomenon: falling, bouncing, reflection, and collision.
3. Utilize object-oriented programming techniques (inheritance, extension,
and the strategy pattern) to encapsulate game behavior.
4. Design and implement correct algorithms for directing on-screen
animations, characters, and sounds in response to user input, such as
keypresses and mouse clicks.
5. Design and implement correct algorithms for minimizing screen flicker
and tearing.
6. Design and implement correct algorithms that utilize threads to permit
concurrent on-screen actions.
7. Design and implement a complete 2D video game incorporating the
following components: scoring, increasing difficulty levels, animation,
sound effects, winnability (must be winnable), and user interaction.

General Education Information
• Approved College Associate Degree GE Applicability
• CSU GE Applicability (Recommended-requires CSU approval)
• Cal-GETC Applicability (Recommended - Requires External Approval)
• IGETC Applicability (Recommended-requires CSU/UC approval)

Articulation Information
• CSU Transferable
• UC Transferable

Methods of Evaluation
• Essay Examinations

• Example: In an essay, define the term "double buffering" and
describe how this technique can be used to eliminate "tearing" on
the screen? Rubric Grading. Answer: Double-buffering allocates
two graphical bitmaps in memory. One is designated the "back
buffer" and is the one drawn upon by the rendering routines.
The other is the "front buffer" and is the one being accessed by
the display driver so it appears on the screen. During the video
blanking phase, the two buffers are swapped. That is, the front
buffer becomes the back buffer and vice-versa. By swapping the
buffers during video blanking, tearing is eliminated.

• Objective Examinations
• Example: Name two different design patterns.

• Problem Solving Examinations
• Example: 1. Design and implement an algorithm to detect the

collision between the two moving squares on the screen. Every
time an object collides with another object the size of the object
should shrink. Rubric Grading. 2. Write a Java applet which
displays a picture. The applet should be 500 pixels wide by 400
pixels high. Your picture should involve at least two types of
shapes (lines, rectangles, ovals, etc.) and at least two colors. You
should use for-loops to draw multiple copies of the shapes, not
just a lot of separate draw statements. For instance, you might
draw 6 blue squares running down a diagonal and 5 horizontal
green lines across the applet (using two for-loops). Completing
the bare minimum program will earn you a B on this assignment.
To get a higher grade, you should do something extra to show
off. What you do is up to you, but it should demonstrate that you
have thought more about your program. For this assignment,
possibilities might include changing the sizes of the shapes

Sierra College Catalog 2024-2025

2 CSCI 0076A - Game Programming

across the screen, drawing some fancier pattern, alternating
colors, etc. Rubric Grading.

• Projects
• Example: Design and implement a complete 2D video game

incorporating the following components: scoring, increasing
difficulty levels, animation, sound effects, winnability (must be
winnable), and user interaction. The details of the project should
be provided by the instructor. Rubric Grading.

Repeatable
No

Methods of Instruction
• Laboratory
• Lecture/Discussion
• Distance Learning

Lab:

1. Lecture with directed lab assignment. Example: simulated physics.
"Real" physics are often too complex to program effectively and
actually result in dull games. Simulated physics are easier to
implement and are good enough to satisfy our senses. During
lecture, the instructor presents equations and formulas for
simulating common physical phenomenon, such as falling objects,
collisions, and jumping. During directed lab, the students implement
the algorithms in their computer programs. Each program is
accompanied by a write-up describing which phenomenon are being
simulated and how the simulation results in compelling game play.
The simulations can be critiqued by the class as a whole. (Laboratory
Objective 2)

Lecture:

1. Males and females have differing ideas about what makes games
compelling. Age is also a factor. During the instructor lead lecture and
discussion, several examples of existing games can be evaluated and
critiqued. Student should discuss the topic in groups of there and
then share it with the whole class. Prior to class, the students will
have read a few case studies of gender and age differences in video
games. (Lecture Objective 5)

Distance Learning

1. Instructor provides a video lecture on simulated physics. "Real"
physics are often too complex to program effectively and actually
result in dull games. Simulated physics are easier to implement and
are good enough to satisfy our senses. During lecture, the instructor
presents equations and formulas for simulating common physical
phenomenon, such as falling objects, collisions, and jumping. As a lab
assignment, the students implement the algorithms in their computer
programs. Each program is accompanied by a write-up describing
which phenomenon are being simulated and how the simulation
results in compelling game play. The assignment will be uploaded to
LMS for grading. (Lecture Objective 2; Laboratory Objective 2)

Typical Out of Class Assignments
Reading Assignments
1. Read chapters from the assigned college-level text books. Each
chapter explains a different technique for programming computer games.
Be ready to answer some questions during the lecture. 2. Read online

case studies of usability, programming techniques, and game design. Be
prepared to discuss in class.

Writing, Problem Solving or Performance
1. Design a simple video game using the techniques which we've
discussed in class.Your game should be a two-dimensional, sprite-based,
interactive game. The details of characters, layout, input, scoring, etc., are
all up to you. You could design a brand-new game or describe a version
or variation of some old favorite. 2. You should produce a program
which involves both animation and user input. That is, there should be
some part of the application which is moving or changing based on an
animation loop (such as the ball in Pong) and some part which depends
on user input (such as the paddles in Pong). You could have the user
input directly control some shape on the screen, or you could have the
user input do something like change colors or speeds of shapes in the
animation.

Other (Term projects, research papers,
portfolios, etc.)
Required Materials

• Killer Game Programming in Java
• Author: Davison, Andrew
• Publisher: O'Reilley & Associates
• Publication Date: 2005
• Text Edition: 1st
• Classic Textbook?: No
• OER Link:
• OER:

• Beginning Java SE 6 Game Programming
• Author: Harbour, Jonathan
• Publisher: Course Technology
• Publication Date: 2011
• Text Edition: 3rd
• Classic Textbook?: No
• OER Link:
• OER:

Other materials and-or supplies required
of students that contribute to the cost of
the course.

Sierra College Catalog 2024-2025

